Some Competitive Learning Methods

Bernd Fritzke
Systems Biophysics
Institute for Neural Computation
Ruhr-Universitat Bochum

Draft from April 5, 1997
(Some additions and refinements are planned for this document so it

will stay in the draft status still for a while.)

Comments are welcome.



Abstract

This report has the purpose of describing several algorithms from the literature all
related to competitive learning. A uniform terminology is used for all methods.
Moreover, identical examples are provided to allow a qualitative comparisons of
the methods. The on-line version® of this document contains hyperlinks to Java
implementations of several of the discussed methods.

Lhttp:/ /www.neuroinformatik.ruhr-uni-bochum.de/ini/ VDM /research/gsn/JavaPaper/



Contents

1 Introduction
2 Common Properties & Notational Conventions
3 Goals of Competitive Learning
3.1 Error Minimization . . . . . ... ... ... ..
3.2 Entropy Maximization . . .. .. .. ... ...
3.3 Feature Mapping . . .. ... ... ... ....
34 OtherGoals . . .. ... .............
4 Hard Competitive Learning
4.1 Batch Update: LBG . . ... ..........
4.2 On-line Update: Basic Algorithm . . . . .. ..
4.3 Constant Learning Rate . . . .. ... ... ..
4.4 k-means . . . . .. ...
4.5 Exponentially Decaying Learning Rate . . . . .
5 SCL w/o Fixed Network Dimensionality
51 NeuralGas .. ... .. ... .. ........
5.2 Competitive Hebbian Learning . . ... .. ..
5.3 Neural Gas plus Competitive Hebbian Learning
5.4 Growing Neural Gas . . . ... ... ......
5.5 Other Methods . . ... ... ..........
6 SCL with Fixed Network Dimensionality
6.1 Self-organizing Feature Map . . . . . . ... ..
6.2 Growing Cell Structures . . . .. .. ... ...
6.3 Growing Grid . . . ... ... ... ... ...,
6.4 Other Methods . . ... ... ..........
7 Quantitative Results (t.b.d.)
8 Discussion (t.b.d.)
References

10
10
11
13
14
16

20
20
21
24
25
29

30
30
31
34
39

40

41

41



Chapter 1

Introduction

In the area of competitive learning a rather large number of models exist which
have similar goals but differ considerably in the way they work. A common goal
of those algorithms is to distribute a certain number of vectors in a possibly high-
dimensional space. The distribution of these vectors should reflect (in one of several
possible ways) the probability distribution of the input signals which in general is
not given explicitly but only through sample vectors.

In this report we review several methods related to competitive learning. A
common terminology is used to make a comparison of the methods easy. Moreover,
software implementations of the methods are provided allowing experiments with
different data distributions and observation of the learning process. Thanks to the
Java programming language the implementations run on a large number of platforms
without the need of compilation or local adaptation.

The report is structured as follows: In chapter 2 the basic terminology is in-
troduced and properties shared by all models are outlined. Chapter 3 discusses
possible goals for competitive learning systems. Chapter 4 is concerned with hard
competitive learning, i.e. models where only the winner for the given input signal
is adapted. Chapters 5 and 6 describe soft competitive learning. These models are
characterized by adapting in addition to the winner also some other units of the
network. Chapter 5 is concerned with models where the network has no fixed di-
mensionality. Chapter 6 describes models which do have a fixed dimensionality and
may be used for data visualization, since they define a mapping from the usually
high-dimensional input space to the low-dimensional network structure. The last
two chapters still have to be written and will contain quantitative results and a
discussion.



Chapter 2

Common Properties and
Notational Conventions

The models described in this report share several architectural properties which are
described in this chapter. For simplicity, we will refer to any of these models as
network even if the model does not belong to what is usually understood as “neural
network” .

Each network consists of a set of N units:

.A= {01, C2,y - -y CN}. (21)
Each unit ¢ has an associated reference vector
w. € R" (2.2)

indicating its position or receptive field center in input space.
Between the units of the network there exists a (possibly empty) set

CCAx A (2.3)
of neighborhood connections which are unweighted and symmetric:
(3,5) e C <= (j4,1) € C. (2.4)

These connections have nothing to do with the weighted connections found, e.g., in

multi-layer perceptrons (Rumelhart et al., 1986). They are used in some methods to

extend the adaptation of the winner (see below) to some of its topological neighbors.
For a unit ¢ we denote with NV, the set of its direct topological neighbors:

N, ={i € Al(c,i) € C}. (2.5)

The n-dimensional input signals are assumed to be generated either according
to a continuous probability density function

p(€),€ € R (2.6)
or from a finite training data set
DZ{&la"'aﬁM}’gi € R". (27)

For a given input signal € the winner s(£€) among the units in A is defined as
the unit with the nearest reference vector



s(§) = arg min e 4[|§ — wel|. (2.8)

whereby || - || denotes the Euclidean vector norm. In case of a tie among several
units one of them is chosen to be the winner by throwing a fair dice. In some cases
we will denote the current winner simply by s (omitting the dependency on &). If
not only the winner but also the second-nearest unit or even more distant units
are of interest, we denote with s; the i-nearest unit (s; is the winner, s, is the
second-nearest unit, etc.).

Two fundamental and closely related concepts from computational geometry are
important to understand in this context. These are the Voronoi Tessellation and
the Delaunay Triangulation:

Given a set of vectors wy, ..., wx in R" (see figure 2.1 a), the Voronoi Region
V; of a particular vector w; is defined as the set of all points in R™ for which w; is
the nearest vector:

Vi={§ €R"i =arg minje{1,...,N}||€ - w;l[}. (2.9)

In order for each data point to be associated to exactly one Voronoi region we
define (as previously done for the winner) that in case of a tie the corresponding
point is mapped at random to one of the nearest reference vectors. Alternatively,
one could postulate general positions for all data points and reference vectors in
which case a tie would have zero probability.

It is known, that each Voronoi region V; is a convex area, i.e.

(&1 €Ving e Vi) = (& +a(€y—&) € Vi) (Va,0<a<). (2.10)

The partition of R formed by all Voronoi polygons is called Voronoi Tessellation
or Dirichlet Tessellation (see figure 2.1 b). Efficient algorithms to compute it are
only known for two-dimensional data sets (Preparata and Shamos, 1990). The
concept itself, however, is applicable to spaces of arbitrarily high dimensions.

If one connects all pairs of points for which the respective Voronoi regions share
an edge (an (n — 1)-dimensional hyperface for spaces of dimension n) one gets
the Delaunay Triangulation (see figure 2.1 ¢). This triangulation is special among
all possible triangulation in various respects. It is, e.g., the only triangulation in
which the circumcircle of each triangle contains no other point from the original
point set than the vertices of this triangle. Moreover, the Delaunay triangulation
has been shown to be optimal for function interpolation (Omohundro, 1990). The
competitive Hebbian learning method (see section 5.2) generates a subgraph of the
Delaunay triangulation which is limited to those areas of the input space where
data is found.

For convenience we define the Voronoi Region of a unit c,c € A, as the Voronoi
region of its reference vector:

Ve ={£ e R"[s(&§) = c}. (2.11)

In the case of a finite input data set D we denote for a unit ¢ with the term
Voronoi Set the subset R, of D for which ¢ is the winner (see figure 2.2):

Re = {€& € D|s(€) = c}. (2.12)



6 CHAPTER 2. COMMON PROPERTIES & NOTATIONAL CONVENTIONS

c)

Figure 2.1: a) Point set in R?, b) corresponding Voronoi tessellation, ¢) correspond-
ing Delaunay triangulation.

a) data set D b) Voronoi sets

Figure 2.2: An input data set D is shown (a) and the partition of D into Voronoi
sets for a particular set of reference vectors (b). Each Voronoi set contains the data
points within the corresponding Voronoi field.



Chapter 3

Goals of Competitive
Learning

A number of different and often mutually exclusive goals can be set for competitive
learning systems. In the following some of these goals are discussed.

3.1 Error Minimization

A frequent goal is the minimization of the expected quantization (or distortion)
error. In the case of a continuous input signal distribution p(£) this amounts to
finding values for the reference vectors w,,c € A such that the error

B4 = Y [ 116~ welPp(e)d (3.1)

ceA” Ve

is minimized (V. is the Voronoi region of unit ¢).

Correspondingly, in the case of a finite data set D the error

E(D,A) =1/D|)_ Y (€~ wel? (3-2)

cEAEER,

has to be minimized with R. being the Voronoi set of the unit c.

A typical application where error minimization is important is vector quantiza-
tion (Linde et al., 1980; Gray, 1984). In vector quantization data is transmitted
over limited bandwidth communication channels by transmitting for each data vec-
tor only the index of the nearest reference vector. The set of reference vectors
(which is called codebook in this context) is assumed to be known both to sender
and receiver. Therefore, the receiver can use the transmitted indexes to retrieve
the corresponding reference vector. There is an information loss in this case which
is equal to the distance of current data vector and nearest reference vector. The
expectation value of this error is described by equations (3.1) and (3.2). In par-
ticular if the data distribution is clustered (contains subregions of high probability
density), dramatic compression rates can be achieved with vector quantization with
relatively little distortion.



8 CHAPTER 3. GOALS OF COMPETITIVE LEARNING

3.2 Entropy Maximization

Sometimes the reference vectors should be distributed such that each reference
vector has the same chance to be winner for a randomly generated input signal &:

P(s(¢) =c) = |17| (Ve e A). (3.3)

If we interpret the generation of an input signal and the subsequent mapping
onto the nearest unit in 4 as random experiment which assigns a value ¢ € A to
the random variable X, then (3.3) is equivalent to maximizing the entropy

mm=—§ﬁwwmmthmy§5» (3.4)
rzeA

with E(-) being the expectation operator.
If the data is generated from a continuous probability distribution p(€), then
(3.3) is equivalent to
1
| peds= o (veea. (35)
v. Al

In the case of a finite data set D (3.3) corresponds to the situation where each
Voronoi set R. contains (up to discretization effects) the same number of data
vectors: R.| 1

C
Dl =T (Ve € A). (3.6)

An advantage of choosing reference vectors such as to maximize entropy is the
inherent robustness of the resulting system. The removal (or “failure”) of any
reference vector affects only a limited fraction of the data.

Entropy maximization and error minimization can in general not be achieved
simultaneously. In particular if the data distribution is highly non-uniform both
goals differ considerably. Consider, e.g., a signal distribution p(&) where 50 percent
of the input signals come from a very small (point-like) region of the input space,
whereas the other fifty percent are uniformly distributed within a huge hypercube.
To maximize entropy half of the reference vectors have to be positioned in each
region. To minimize quantization error however, only one single vector should be
positioned in the point-like region (reducing the quantization error for the signals
there basically to zero) and all others should be uniformly distributed within the
hypercube.

3.3 Feature Mapping

With some network architectures it is possible to map high-dimensional input signals
onto a lower-dimensional structure in such a way, that some similarity relations
present in the original data are still present after the mapping. This has been
denoted feature mapping and can be useful for data visualization. A prerequisite
for this is that the network used has a fixed dimensionality. This is the case, e.g.,
for the self-organizing feature map and the other methods discussed in section 6 of
this report.

A related question is, how topology-preserving is the mapping from the input
data space onto the discrete network structure, i.e. how well are similarities pre-
served? Several quantitative measures have been proposed to evaluate this like
the topographic product (Bauer and Pawelzik, 1992) or the topographic function
(Villmann et al., 1994).



3.4. OTHER GOALS 9

3.4 Other Goals

Competitive learning methods can also be used for density estimation, i.e. for the
generation of an estimate for the unknown probability density p(£) of the input
signals.

Another possible goal is clustering, where a partition of the data into subgroups
or clusters is sought, such that the distance of data items within the same cluster
(intra-cluster variance) is small and the distance of data items stemming from differ-
ent clusters (inter-cluster variance) is large. Many different flavors of the clustering
problem exist depending, e.g., on whether the number of clusters is pre-defined or
should be a result of the clustering process. A comprehensive overview of clustering
methods is given by Jain and Dubes (1988).

Combinations of competitive learning methods with supervised learning ap-
proaches are feasible, too. One possibility are radial basis function networks (RBFN)
where competitive learning is used to position the radial centers (Moody and Darken,
1989; Fritzke, 1994b). Moreover, local linear maps have been combined with com-
petitive learning methods (Walter et al., 1990; Martinetz et al., 1989, 1993; Fritzke,
1995b). In the simplest case for each Voronoi region one linear model is used to
describe the input/output relationship of the data within the Voronoi region.



Chapter 4

Hard Competitive Learning

Hard competitive learning (a.k.a. winner-take-all learning) comprises methods where
each input signal only determines the adaptation of one unit, the winner. Different
specific methods can be obtained by performing either batch or on-line update. In
batch methods (e.g. LBG) all possible input signals (which must come from a finite
set in this case) are evaluated first before any adaptations are done. This is iterated
a number of times. On-line methods, on the other hand (e.g. k-means), perform
an update directly after each input signal. Among the on-line methods variants
with constant adaptation rate can be distinguished from variants with decreasing
adaptation rates of different kinds.

A general problem occurring with hard competitive learning is the possible ex-
istence of “dead units”. These are units which — perhaps due to inappropriate
initialization — are never winner for an input signal and, therefore, keep their posi-
tion indefinitely. Those units do not contribute to whatever the networks purpose
is (e.g. error minimization) and must be considered harmful since they are unused
network resources. A common way to avoid dead units is to use distinct sample
vectors according to p(€) to initialize the reference vectors.

The following problem, however, remains: if the reference vectors are initialized
randomly according to p(£€), then their expected initial local density is proportional
to p(€). This may be rather suboptimal for certain goals. For example, if the goal is
error minimization and p(&) is highly non-uniform, then it is better to undersample
the regions with high probability density (i.e., use less reference vectors there than
dictated by p(€)) and oversample the other regions. One possibility to adapt the
distribution of the reference vectors to a specific goal is the use of local statistical
measures for directing insertions and possibly also deletion of units (see sections
5.4, 6.2 and 6.3).

Another problem of hard competitive learning is that different random initial-
izations may lead to very different results. The purely local adaptations may not
be able to get the system out of the poor local minimum where it was started.
One way to cope with this problem is to change the “winner-take-all” approach of
hard competitive learning to the “winner-take-most” approach of soft competitive
learning. In this case not only the winner but also some other units are adapted
(see chapters 5 and 6). In general this decreases the dependency on initialization.

4.1 Batch Update: LBG

The LBG (or generalized Lloyd) algorithm (Linde et al., 1980; Forgy, 1965; Lloyd,
1957) works by repeatedly moving all reference vectors to the arithmetic mean of
their Voronoi sets. The theoretical foundation for this is that it can be shown

10



4.2. ON-LINE UPDATE: BASIC ALGORITHM 11

(Gray, 1992) that a necessary condition for a set of reference vectors {w.|c € A} to
minimize the distortion error

E(D,A) =1/ID Y D 116 —wel® (4.1)

ceAEER.

is that each reference vector w,. fulfills the centroid condition. In the case of a finite
set of input signals and the use of the Euclidean distance measure the centroid

condition reduces to 1
“l geR,

whereby R, is the Voronoi set of unit c.
The complete LBG algorithm is the following:

1. Initialize the set A to contain N (N <« M) units ¢;
.AZ{Cl, C2,y ..., CN} (43)

with reference vectors w., € R" chosen randomly (but mutually different)
from the finite data set D.

2. Compute for each unit ¢ € A its Voronoi set R..

3. Move the reference vector of each unit to the mean of its Voronoi set:

W, — IR_ch Y& (4.4)

£ERC

4. If in step 3 any of the w, did change, continue with step 2.
5. Return the current set of reference vectors.

The steps 2 and 3 together form a so-called Lloyd iteration, which is guaranteed
to decrease the distortion error or leave it at least unchanged. LBG is guaranteed to
converge in a finite number of Lloyd iterations to a local minimum of the distortion
error function (see figure 4.1 for an example).

An extension of LBG, called LBG-U (Fritzke, 1997), is often able to improve on
the local minima found by LBG. LBG-U performs non-local moves of single reference
vectors which do not contribute much to error reduction (and are, therefore, not
useful, thus the “U” in LBG-U) to locations where large quantization error does
occur. Thereafter, normal LBG is used to find the nearest local minimum of the
distortion error function. This is iterated as long as the LBG-generated local minima
improve. LBG-U requires a finite data set, too, and is guaranteed to converge in a
finite number of steps.

4.2 On-line Update: Basic Algorithm

In some situations the data set D is so huge that batch methods become impractical.
In other cases the input data comes as a continuous stream of unlimited length which
makes it completely impossible to apply batch methods. A resort is on-line update,
which can be described as follows:

1. Initialize the set A to contain N units ¢;
.AZ{Cl, C2,y ..., CN} (45)

with reference vectors w., € R" chosen randomly according to p(£).



12 CHAPTER 4. HARD COMPETITIVE LEARNING

g) 5 Lloyd iterations h) 6 Lloyd iterations i) 7 Lloyd iterations

Figure 4.1: LBG simulation. a) The data set D consisting of 100 data items. b) 20
reference vectors have been initialized randomly from points in D. The correspond-
ing Voronoi tessellation is shown. c-i) The positions of the reference vectors after
the indicated number of Lloyd iterations. Reference vectors which did not move
during the previous Lloyd iteration are shown in black. In this simulation LBG has
converged after 7 Lloyd iterations.



4.3. CONSTANT LEARNING RATE 13

2. Generate at random an input signal € according to p(£).

3. Determine the winner s = s(€):

s(§) = arg min¢ 4]|§ — wel|. (4.6)
4. Adapt the reference vector of the winner towards &:

Aws = €(€ — wy). (4.7)

5. Unless the maximum number of steps is reached continue with step 2.

Thereby, the learning rate € determines the extent to which the winner is adapted
towards the input signal. Depending on whether e stays constant or decays over
time, several different methods are possible some of which are described in the
following.

4.3 Constant Learning Rate
If the learning rate is constant, i.e.

€=¢€0,(0 <€ < 1), (4.8)

then the value of each reference vector w. represents an exponentially decaying
average of those input signals for which the unit ¢ has been winner. To see this,
let £€5,&5,...,&f be the sequence of input signals for which ¢ is the winner. The
sequence of successive values taken by w. can then be written as

w.(0) = (random signal according to p(&))

we(l) = we(0)+ e (€7 — we(0))

(1 — e0)we(0) + eoéy (4.9)
we(2) = (1—e)we(l)+ eods
= (1—e)*We(0) + (1 — eo)eoé? + o5 (4.10)
we(t) = (1—e)we(t — 1)+ €os
= (1—eo)'we(0)+e0 Y (1— o) T'6s. (4.11)

From (4.8) and (4.11) it is obvious that the influence of past input signals decays
exponentially fast with the number of further input signals for which ¢ is winner
(see also figure 4.2). The most recent input signal, however, always determines
a fraction e of the current value of w.. This has two consequences. First, such a
system stays adaptive and is therefore in principle able to follow also non-stationary
signal distribution p(£€). Second (and for the same reason), there is no convergence.
Even after a large number of input signals the current input signal can cause a
considerable change of the reference vector of the winner. A typical behavior of such
a system in case of a stationary signal distribution is the following: the reference
vectors drift from their initial positions to quasi-stationary positions where they



14 CHAPTER 4. HARD COMPETITIVE LEARNING

1 : T LB LR | T T T T 1117 T T T T TIrrr| T T ||||||:
€ =05 —
=01 -——— ]

0.1 € =0.01 ----

€0 = 0.001 !

0.01 -

0.001 i

0.0001 -

le-05 —

18—06 1 Ll 1L 111 II 1 L L L L1111 I\- 1 L1 111 I‘II 1 L1 1 |.“‘1 ||-
1 10 100 1000 10000

Figure 4.2: Influence of an input signal £ on the vector of its winner s as a function
of the number of following input signals for which s is winner (including £). Results
for different constant adaptation rates are shown. The respective section with the
z-axis indicates how many signals are needed until the influence of £ is below 1076.
For example if the learning rate ¢ is set to 0.5, about 10 additional signals (the
section with the z-axis is near 11) are needed to let this happen.

start to wander around a dynamic equilibrium. Better quasi-stationary positions in
terms of mean square error are achieved with smaller learning rates. In this case,
however, the system also needs more adaptation steps to reach the quasi-stationary

=
<)
m.
=
3
=
@






ges:

diver












_7 O
_ 2



ing:

=}
. . ]

40000

follow






<



o0



=
<



for a while.



q and f.

error variable






some models.



7 O
™

winner



whereby

each node.







lex.

simp










vector:

whereby



columns.

whereby
with









40



41



1992.

1992.

42



1990.

Press.

1990.



submitted.



