Next: About this document
Up: Some Competitive Learning Methods
Previous: Discussion (t.b.d.)
References
- H.-U. Bauer and K. Pawelzik.
- Quantifying the neighborhood preservation of self-organizing feature maps.
IEEE Transactions on Neural Networks, 3(4):-579, 1992.
- H.-U. Bauer and T. Villmann.
- Growing a hypercubical output space in a self-organizing feature map.
Tr-95-030, International Computer Science Institute, Berkeley, 1995.
- J. Blackmore and R. Miikkulainen.
- Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map.
TR AI92-192, University of Texas at Austin, Austin, TX, 1992.
- C. Darken and J. Moody.
- Fast adaptive k-means clustering: Some empirical results.
In Proc. IJCNN, volume II, pages 233-238. IEEE Neural Networks Council, 1990.
- D. DeSieno.
- Adding a conscience to competitive learning.
In IEEE International Conference on Neural Networks, volume 1, pages 117-124, New York, 1988. (San Diego 1988) IEEE.
- E. Forgy.
- Cluster analysis of multivariate data: efficiency vs. interpretanility of classifications.
Biometrics, 21:, 1965.
abstract.
- B. Fritzke.
- Growing cell structures - a self-organizing network for unsupervised and supervised learning.
Neural Networks, 7(9):-1460, 1994a.
- B. Fritzke.
- Fast learning with incremental RBF networks.
Neural Processing Letters, 1(1):-5, 1994b.
- B. Fritzke.
- A growing neural gas network learns topologies.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995a.
- B. Fritzke.
- Incremental learning of local linear mappings.
In F. Fogelman and P. Gallinari, editors, ICANN'95: International Conference on Artificial Neural Networks, pages 217-222, Paris, France, 1995b. EC2 & Cie.
- B. Fritzke.
- The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks.
Neural Processing Letters, 5(1), 1997.
- R. M. Gray.
- Vector quantization.
IEEE ASSP Magazine, 1:-29, 1984.
- R. M. Gray.
- Vector Quantization and Signal Compression.
Kluwer Academic Press, 1992.
- A. K. Jain and R. C. Dubes.
- Algorithms for clustering data.
Prentice Hall, 1988.
- S. Jokusch.
- A neural network which adapts its structure to a given set of patterns.
In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 169-172. Elsevier Science Publishers B.V., 1990.
- J. A. Kangas, T. Kohonen, and T. Laaksonen.
- Variants of self-organizing maps.
IEEE Transactions on Neural Networks, 1(1):-99, 1990.
- S. Kirkpatrick, C. D. G. Jr., , and M. P. Vecchi.
- Optimization by simulated annealing.
Science, 220, 1983.
- T. Kohonen.
- Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:-69, 1982.
- Y. Linde, A. Buzo, and R. M. Gray.
- An algorithm for vector quantizer design.
IEEE Transactions on Communication, COM-28:-95, 1980.
- S. P. Lloyd.
- Least squares quantization in pcm.
technical note, Bell Laboratories, 1957.
published in 1982 in IEEE Transactions on Information Theory.
- J. MacQueen.
- On convergence of k-means and partitions with minimum average variance.
Ann. Math. Statist., 36:, 1965.
abstract.
- J. MacQueen.
- Some methods for classification and analysis of multivariate observations.
volume 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical statistics and probability, pages 281-297, Berkeley, 1967. University of California Press.
- T. M. Martinetz.
- Competitive Hebbian learning rule forms perfectly topology preserving maps.
In ICANN'93: International Conference on Artificial Neural Networks, pages 427-434, Amsterdam, 1993. Springer.
- T. M. Martinetz, S. G. Berkovich, and K. J. Schulten.
- Neural-gas network for vector quantization and its application to time-series prediction.
IEEE Transactions on Neural Networks, 4(4):-569, 1993.
- T. M. Martinetz, H. J. Ritter, and K. J. Schulten.
- 3D-neural-network for learning visuomotor-coordination of a robot arm.
In International Joint Conference on Neural Networks, pages II.351-356, Washington DC, 1989.
- T. M. Martinetz and K. J. Schulten.
- A ``neural-gas'' network learns topologies.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 397-402. North-Holland, Amsterdam, 1991.
- T. M. Martinetz and K. J. Schulten.
- Topology representing networks.
Neural Networks, 7(3):-522, 1994.
- J. E. Moody and C. Darken.
- Fast learning in networks of locally-tuned processing units.
Neural Computation, 1:-294, 1989.
- S. M. Omohundro.
- The Delaunay triangulation and function learning.
Tr-90-001, International Computer Science Institute, Berkeley, 1990.
- F. P. Preparata and M. I. Shamos.
- Computational geometry.
Springer, New York, 1990.
- H. J. Ritter, T. M. Martinetz, and K. J. Schulten.
- Neuronale Netze.
Addison-Wesley, München, 1991.
- J. S. Rodrigues and L. B. Almeida.
- Improving the learning speed in topological maps of patterns.
In Proceedings of INNC, pages 813-816, Paris, 1990.
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
- Learning internal representations by error propagation.
In R. D. E. and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, Cambridge, 1986.
- T. Villmann, R. Der, M. Herrmann, and T. Martinetz.
- Topology presevation in self-organizing feature maps: exact definition and measurement.
IEEE TNN, 1994.
submitted.
- J. Walter, H. J. Ritter, and K. J. Schulten.
- Non-linear prediction with self-organizing maps.
In International Joint Conference on Neural Networks, pages I.589-594, San Diego, 1990.
- D. J. Willshaw and C. von der Malsburg.
- How patterned neural connections can be set up by self-organization.
In Proceedings of the Royal Society London, volume B194, pages 431-445, 1976.
- L. Xu.
- Adding learning expectation into the learning procedure of self-organizing maps.
Int. Journal of Neural Systems, 1(3):-283, 1990.
Bernd Fritzke
Sat Apr 5 18:17:58 MET DST 1997