next up previous contents
Next: About this document Up: Some Competitive Learning Methods Previous: Discussion (t.b.d.)

References

H.-U. Bauer and K. Pawelzik.
Quantifying the neighborhood preservation of self-organizing feature maps.
IEEE Transactions on Neural Networks, 3(4):-579, 1992.

H.-U. Bauer and T. Villmann.
Growing a hypercubical output space in a self-organizing feature map.
Tr-95-030, International Computer Science Institute, Berkeley, 1995.

J. Blackmore and R. Miikkulainen.
Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map.
TR AI92-192, University of Texas at Austin, Austin, TX, 1992.

C. Darken and J. Moody.
Fast adaptive k-means clustering: Some empirical results.
In Proc. IJCNN, volume II, pages 233-238. IEEE Neural Networks Council, 1990.

D. DeSieno.
Adding a conscience to competitive learning.
In IEEE International Conference on Neural Networks, volume 1, pages 117-124, New York, 1988. (San Diego 1988) IEEE.

E. Forgy.
Cluster analysis of multivariate data: efficiency vs. interpretanility of classifications.
Biometrics, 21:, 1965.
abstract.

B. Fritzke.
Growing cell structures - a self-organizing network for unsupervised and supervised learning.
Neural Networks, 7(9):-1460, 1994a.

B. Fritzke.
Fast learning with incremental RBF networks.
Neural Processing Letters, 1(1):-5, 1994b.

B. Fritzke.
A growing neural gas network learns topologies.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995a.

B. Fritzke.
Incremental learning of local linear mappings.
In F. Fogelman and P. Gallinari, editors, ICANN'95: International Conference on Artificial Neural Networks, pages 217-222, Paris, France, 1995b. EC2 & Cie.

B. Fritzke.
The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks.
Neural Processing Letters, 5(1), 1997.

R. M. Gray.
Vector quantization.
IEEE ASSP Magazine, 1:-29, 1984.

R. M. Gray.
Vector Quantization and Signal Compression.
Kluwer Academic Press, 1992.

A. K. Jain and R. C. Dubes.
Algorithms for clustering data.
Prentice Hall, 1988.

S. Jokusch.
A neural network which adapts its structure to a given set of patterns.
In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 169-172. Elsevier Science Publishers B.V., 1990.

J. A. Kangas, T. Kohonen, and T. Laaksonen.
Variants of self-organizing maps.
IEEE Transactions on Neural Networks, 1(1):-99, 1990.

S. Kirkpatrick, C. D. G. Jr., , and M. P. Vecchi.
Optimization by simulated annealing.
Science, 220, 1983.

T. Kohonen.
Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:-69, 1982.

Y. Linde, A. Buzo, and R. M. Gray.
An algorithm for vector quantizer design.
IEEE Transactions on Communication, COM-28:-95, 1980.

S. P. Lloyd.
Least squares quantization in pcm.
technical note, Bell Laboratories, 1957.
published in 1982 in IEEE Transactions on Information Theory.

J. MacQueen.
On convergence of k-means and partitions with minimum average variance.
Ann. Math. Statist., 36:, 1965.
abstract.

J. MacQueen.
Some methods for classification and analysis of multivariate observations.
volume 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical statistics and probability, pages 281-297, Berkeley, 1967. University of California Press.

T. M. Martinetz.
Competitive Hebbian learning rule forms perfectly topology preserving maps.
In ICANN'93: International Conference on Artificial Neural Networks, pages 427-434, Amsterdam, 1993. Springer.

T. M. Martinetz, S. G. Berkovich, and K. J. Schulten.
Neural-gas network for vector quantization and its application to time-series prediction.
IEEE Transactions on Neural Networks, 4(4):-569, 1993.

T. M. Martinetz, H. J. Ritter, and K. J. Schulten.
3D-neural-network for learning visuomotor-coordination of a robot arm.
In International Joint Conference on Neural Networks, pages II.351-356, Washington DC, 1989.

T. M. Martinetz and K. J. Schulten.
A ``neural-gas'' network learns topologies.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 397-402. North-Holland, Amsterdam, 1991.

T. M. Martinetz and K. J. Schulten.
Topology representing networks.
Neural Networks, 7(3):-522, 1994.

J. E. Moody and C. Darken.
Fast learning in networks of locally-tuned processing units.
Neural Computation, 1:-294, 1989.

S. M. Omohundro.
The Delaunay triangulation and function learning.
Tr-90-001, International Computer Science Institute, Berkeley, 1990.

F. P. Preparata and M. I. Shamos.
Computational geometry.
Springer, New York, 1990.

H. J. Ritter, T. M. Martinetz, and K. J. Schulten.
Neuronale Netze.
Addison-Wesley, München, 1991.

J. S. Rodrigues and L. B. Almeida.
Improving the learning speed in topological maps of patterns.
In Proceedings of INNC, pages 813-816, Paris, 1990.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In R. D. E. and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, Cambridge, 1986.

T. Villmann, R. Der, M. Herrmann, and T. Martinetz.
Topology presevation in self-organizing feature maps: exact definition and measurement.
IEEE TNN, 1994.
submitted.

J. Walter, H. J. Ritter, and K. J. Schulten.
Non-linear prediction with self-organizing maps.
In International Joint Conference on Neural Networks, pages I.589-594, San Diego, 1990.

D. J. Willshaw and C. von der Malsburg.
How patterned neural connections can be set up by self-organization.
In Proceedings of the Royal Society London, volume B194, pages 431-445, 1976.

L. Xu.
Adding learning expectation into the learning procedure of self-organizing maps.
Int. Journal of Neural Systems, 1(3):-283, 1990.



Bernd Fritzke
Sat Apr 5 18:17:58 MET DST 1997